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1 Introduction

* One of the fundamental tools of statistics is probability, which had its
formal beginnings with games of chance in the 17" century.

e Even though the outcome of a particular trial (like tossing a coin or
spinning a roulette wheel) may be uncertain, there is a predictable
long-term outcome
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Coin toss The result of any single coin toss is
random. But the result over many tosses
is predictable, as long as the trials are
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The gambling industry relies on probability distributions to calculate the odds
of winning. The rewards are then fixed precisely so that, on average, players
lose and the house wins.

The industry is very tough on so called “cheaters” because their probability to

win exceeds that of the house. Remember that it is a business, and therefore it
has to be profitable.
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The probability of any outcome of a random phenomenon can be
defined as the proportion of times the outcome would occur in a very
long series of repetitions.

e Similar type of uncertainty and long-term regularity often occurs in
experimental science
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2 Different flavors of probability
2.1 Classical or a priori probability

e The classical definition of probability is prompted by the close association
between the theory of probability of the early ages and games of chance.

Classical probability: If a random experiment can result in n mutually
exclusive and equally likely outcomes and if n, of these outcomes have an
attribute A, then the probability of A is the fraction ny/ n.

* |n this context

Event: a possible outcome or set of possible outcomes of an experiment or
observation. Typically denoted by a capital letter (e.g., A = result of coin
toss)
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e Also

Probability of an event 4: denoted by P(4). Measured on a scale between 0 and 1 inclusive. If A is
impossible P(4) =0, if A 1s certain then P(A)=1.
E.g. P(result of a coin toss is heads).

If there a fixed number of equally likely outcomes P(A) is the fraction of the outcomes that are in A4.
E.g. for a coin toss there are two possible outcomes, Heads or Tails, so
P(result of a coin toss is heads) = 1/2.

Intuitive 1dea: P(4) is the typical fraction of times 4 would occur if an experiment were repeated very
many times.

Event has not occurred

Event has occurred
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Probability models

Probability models describe, mathematically, the outcome of random

processes. They consist of two parts:

1) S = Sample Space: This is a set, or list, of all possible outcomes

of a random process. An event is a subset of the sample space.

2) A probability for each possible event in the sample space S.

Example. Probablility Model for a Coin Toss.
S = {Head, Tail}

Probability of heads = 0.5

Probability of tails =0.5
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e The probability of 0.5 only holds when the trials are independent

Two events are independent if the probability that one event occurs
on any given trial of an experiment is not affected or changed by the

occurrence of the other eveni.

When are trials not independent?

Imagine that these coins were spreacd out so that half were heads up and half
were tails up. Close your eyes and pick one. The probability of it being heads is
0.5. However, if you don’t put it back in the pile, the probability of picking up
another coin that is heads up is now less than 0.5.

The trials are independent cnly when
you put the coin back each time. It is

called sampling with replacement.
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Sample spaces

It's the question that determines the sample space.

H - HHH
A. A basketball player shoots <
three free throws. What are i - HHM
the possible sequences of S = { HHH, HHM,
hits (H) and misses (M)? - HMH > HMH, HMM, MHH,
MHM, MMH, MMM }
- HMM
Note: 8 elements, 23
vy

B. A basketball player shoots
three free throws. What is the S$S={0,1,2,3}
number of baskets made?”?

C. A nutrition researcher feeds a new diet to a young male white rat. What
are the possible outcomes of weight gain (in grams)?

S =[0, =<°[ = (all numbers = 0)
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Rules of Probability
Coin Toss Example:
S = {Head, Tail}
Probability of heads = 0.5
Frobability of tails =05
1) Probabilities range from O Probability of getting a Head = 0.5
(no chance of the event) to We write this as: P(Head) = 0.5

1 (the event has to happen).
P(neither Head nor Tail) = 0

For any eventA, 0= P(A)< 1 P(getting either a Head or a Tail) = 1

2) Because some outcome must occur

on every trial, the sum of the probabilities Coin toss: S = {Head, Tail}

for all possible outcomes (the sample

space) must be exactly 1. P(head) + P(tail) = 0.5 + 0.5 =1
= P(sample space) = 1

P(sample space) = 1
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\enn diagrams:
A and B disjoint

3) Two events A and B are disjoint if they have
no outcomes in common and can never happen
together. The probability that A or B occurs is

then the sum of their individual probabilities. 5

P(Aor B) = “P(AU B)" = P(A) + P(B) m
This is the addition rule for disjoint events. %

A and B not disjoint

Example: If you flip two coins, and the first flip does not affect the second flip:

S ={HH, HT, TH, TT}. The probability of each of these events is 1/4, or 0.25.

The probability that you obtain “only heads or only tails” is:

PHHorTT)=P(HH) + P(TT) =0.25 + 0.25=0.50

K Van Steen
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Coin Toss Example:

S = {Head, Tall}
Probability of heads = 0.5
Probability of tails =0.5

4) The complement of any event Ais the
event that A does not occur, written as Ac.

The complement rule states that the A Ac
probability of an event not occurring is 1
minus the probability that is does occur.

P(I‘IOT A) — P(Ac) - 1 _ P(A) Venn diagram:
Sample space made up of an
event A and its complementary
At I.e., everything that is not A.
Tail® = not Tail = Head

P(Tail) = 1 — P(Head) = 0.5
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Coin Toss Example:

5 = {Head, Tail}
Probability of heads = 0.5
Probability of tails =0.5

5) Two events A and B are independent if knowing that one occurs
does not change the probability that the other occurs.

If A and B are independent, P(A and B) = P(A)P(B)

This is the multiplication rule for independent events.

Two consecutive coin tosses:
P(first Tail and second Tail) = P(first Tail) * P(second Tail)=05*0.5=0.25

AandB L)
N Venn diagram:
;;/;‘Y& \L Event A and event B. The intersection
[ N ]

A / | represents the event {A and B} and

\\ |.::'I If
w 4 outcomes common to both A and B.
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e For instance, a couple wants 3 children. What is the arrangement of
boys (B) and girls (G)?

Genelics tell us that the probability that 2 baby is a2 boy or a girl is the same, 0.5.

Sample space: {BBB, BBG, BGB, GBE, GGB, GBG, BGG, GGG}
=3 All eight outcomes in the sample space are equally likely.
The probability of 2ach is thus 1/8.

=» Each birth is independent of the next, so we can use the multiplication rule.
Example: P(BBB) = P(B)" P(B)" F(E) = [1/2)"(1.2)"(1/2) = 1/8
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e A couple wants 3 children. What are the number of girls (G) they
could have?

The same genetic laws apply. We can use the probabilities above and the addition
rule for disjoint events to calculate the probabilities for X.

Sample space: {0, 1, 2, 3}
=2 P(X=0)=P(BBB)=1/8
= P(X=1)=P(BBG or BGB or GBB) = P(BBG) + P(BGB) + P(GBB) = 3/8

Value of X 0 1 2 3
Probability 1/8 3/8 3/8 1/8
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Probabilities: finite number of outcomes

Finite sample spaces deal with discrete data — data that can only
take on a limited number of values. These values are often integers or

whole numbers.

o8 80 80 0N
] O R
[ ) Il. [ ] -'. [ ] 'i_ [ I

] B

Throwing adie: g.{ »

S={1,2,3 4, 5, 6}

The individual outcomes of a random phenomenon are always disjoint.
=>» The probability of any event is the sum of the probabilities of the

outcomes making up the event (addition rule).

K Van Steen
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If you draw an M&M candy at random from a bag, the candy will have one

S |
M&M candies 90

of six colors. The probability of drawing each color depends on the proportions

manufactured, as described here:

Color Brown Red Green | Orange Blue
Probability 0.3 0.2 0.1 0.1 ?

What is the probability that an M&M chosen at random is blue?

S = {brown, red, yellow, green, orange, blue}

P(S) = P(brown) + P(red) + P(yellow) + P(green) + P(orange) + P(blue) = 1

P(blue) = 1 — [P(brown) + P(red) + P(yellow) + P(green) + P(orange)]
=1-[03+02+02+01+0.1=0.1

What is the probability that a random M&M is either red, yellow, or orange?

P(red or yellow or orange) = P(red) + P(yellow) + P(orange)
=02+02+01=05
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Probabilities: equally likely outcomes

We can assign probabilities either:

o empirically - from our knowledge of numerous similar past events

o Mendel discovered the probabilities of inheritance of a given trait from
experiments on peas without knowing about genes or DNA.

o or theoretically - from our understanding of the phenomenon and
symmetries in the problem

o A B-sided fair die: each side has the same chance of turning up

o Genetic laws of inheritance based on meiosis process

If a random phenomenon has k equally likely possible outcomes, then
each individual outcome has probability 1/k.
count of outcomes m A

And, for any eventA:. P(A)= :
count of outcomes in S

K Van Steen
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Dice

You toss two dice. What is the probability of the outcomes summing to 57

ThisisS: r 7 [F - = Oalml mioml wm

eo.e2a.03 [H0 BH BHE DR HE DE
...... etc.} =

A = =R [ =R

There are 36 possible outcomes in S, all equally likely (given fair dice).

Thus, the probability of any one of them is 1/36.

P(the roll of two dice sums to 5) =
P(1,4) + P(2,3) + P(3,2) + P(4,1) = 4 /36 = 0.111
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A priori probabilities

 The probabilities determined by the classical definition are called a priori
probabilities.
e Results can be derived by pure deductive reasoning. Nothing is said about
how one can determine whether or not a particular coin is true
e The fact that we shall deal with ideal objects in developing a theory of
probability will not trouble us because that is a common requirement of
mathematical systems
O E.g., geometry deals with conceptually perfect circles, lines with zero
width, and so forth, but it is a useful branch of knowledge, which can be
applied to diverse practical problems
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2.2 A posteriori or frequency probability
Limitations of the classical definition

e Limitation 1: The definition of probability must be modified somehow when
the total number of possible outcomes is infinite

0 What is the probability that an integer drawn at random from the
positive integers be even? Start with the first 2N integers...

= Natural ordering: 1,2,3,4,5,6,...

* Ordering 1,3,2;5,7,4;9,11,6,...

* The natural numbers can be ordered that the ratio will oscillate and
never approach any definite value as N increases.
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e Limitation 2: Suppose that we toss a coin known to be biased in favor of
heads (it is bent so that a head is more likely to appear than a tail).

0 What is the probability of a head?
0 The classical definition leaves us completely helpless...

K Van Steen 24



Probability and Statistics Chapter 1: Probability Theory

A posteriori probabilities

We assume that a series of observations (or experiments) can be made under
quite uniform conditions:

 An observation of a random experiment is made

 Then the experiment is repeated under similar conditions, and another
observation is taken

e This is repeated many times, and while conditions are similar each time,
there is an uncontrollable variation which is haphazard or random so that
the observations are individually unpredictable.
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* In many cases the observations will fall into certain classes wherein the
relative frequencies are quite stable.

e This suggests that we postulate a number p, called the probability of the
event, and approximate p by the relative frequency with which the
repeated observations satisfy the event

AP LI00a011ted

K Van Steen 26



Probability and Statistics Chapter 1: Probability Theory

3 Axiomatic probability theory

3.1 Set theory

Introduction

We begin with a wide collection of objects:

Each object in our collection is called a point or element w

The collection is large enough so that it includes all the points under
consideration

The totality of these points is called the space, universe, universal set Q

We will call it the space, anticipating that it will become the sampling space
when we speak of probabilities. Note that w € €.

A set is a collection of objects; for the sequel we assume that sets consist of
points in the space Q
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Definitions

Definition  Subset If every element of a set A4 is also an element of a
set B, then A4 is defined to be a subset of B, and we shall write A < B or
B = A; read ‘4 is contained in B” or ** B contains 4. {{}/

Definition  Equivalent sets Two sets 4 and B are defined to be equiva-
lent, or equal, if A= B and Bc A. This will be indicated by writing

A= B. /]

Definition = Empty set 1f a set A4 contains no points, it will be called
the null set, or empty set, and denoted by ¢. ]/

Definition  Complement The complement of a set 4 with respect to
the space Q, denoted by A4, A, or Q — A, is the set of all points that are in
Q but not in A. [{/
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Definition Union Let A and B be any two subsets of Q; then the
set that consists of all points that are in A4 or B or both is defined to be
the union of A and B and written 4 U B. I/

Definition  Intersection Let 4 and B be any two subsets of Q; then
the set that consists of all points that are in both 4 and B is defined to be
the inierseciion ot A and B and is written 4 n Bor AR /1
Definition  Set difference Let A and B be any two subsets of . The
set of al) points in A that are not in B will be denoted by A4 — B and 1s
defined as ser difference. 1]

K Van Steen 29



Probability and Statistics Chapter 1: Probability Theory

EXAMPLE Let Q={(x, »): 0<x<1 and 0 <y < 1}, which is read the
collection of all points (x, y) for which0 <x<land0<y<1. Define
the following sets:

A ={(x):0<x<1;0<y<1},
A4, ={(x,»):0<x<}:0<y<1),
Ay ={(x,1):0<x<y<l}

Ay ={(x,»):0<x<34;0<y<i)

(We shall adhere to the practice initiated here of using braces to embrace
the points of a set.)
The set relations below follow.

Ay = Ay Ay © Ay Ay N Ay = A4, = A;
Ay A=Ay DAy A ={x»:0<x<1;3<y<l};
Ay — A, ={(x,»):t<x<1;0<y<i) I

K Van Steen
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Definition = Union and intersection of sets Let A be an index set and
{A,: Ae A} ={A,}, a collection of subsets of Q indexed by A. The set
of points that consists of all points that belong to 4, for at least one 4 is

called theunionof thesets {4,} and 1s denoted by U A,. The set of points
LeA

that consists of all points that belong to A4, for every 4 is called the inter-

section of the sets {4,} and is denoted by (") 4,. If Ais empty, then define
LeEA

J4di=¢and N 4,=9Q. /1

LEA LEA

Definition Disjoint or mutually exclusive Subsets 4 and B of Q are
defined to be mutually exclusive or disjoint if A~ B=¢. Subsets
Ay, Ay, ... are defined to be mutually exclusive if A; A; = ¢ for every i #J.

I/
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£ & the enlTe square

IR E P S I PR T PR

A iy e dy] = Ay di iy
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Probability laws

Theorem 1 Commutativelaws A uB=BuAdand AnB=Bn A.

1]/
Theorem 2 Associative laws 4 U (Bu C)=(4 u B)u C, and
An(BAC)=ANnB)AC. i,
Theorem 3 Distributivelaws A n (Bu C)=(4 n B)u (4 n C), and
AUBAC)=(uUB)n(4u C). 11/
Theorem 4 (A€)° = (A) = A: in words, the complement of 4 comple-
ment equals A. /]
Theorem 5 AQ=A;Au Q=Q;Ap=¢;and A v ¢ = A. /1]

Theorem6 AA=Pp, AVA=Q:AnA=A:and AU A= A. /]

K Van Steen

33



Probability and Statistics Chapter 1: Probability Theory

Theorem 7 (4 w E] =A F.ilmi[:lll'-?]l = A w K. These are known
as De Morgan's laws, M

Although we will foel free Lo wse any of the above wws, TG e IMSITUCTIVE
to give a prool of one of them just 1o illustrate the technigue.  Faor eanmple,

tel us show thal (4 o B =4~ B By definition, twe sels are equal if each s
contaimed in the other.  We first show that ¢4 Br=d B By proving that it

@wEAw B lhenwed ~ B Nowwps -[.-f m E?} inphies g 4 W B whichimplics
that &4 and o d W, which in furm implies that we 7 and we B that is,
wic A B, Wenexshowthal A — B = (A By Letwe 4o B, whichmeans
w belongs to hih A and 8, Then a4 w0 8 for it it did, & must belong 1o al
least one of A or B, contradicling that @ belangs to both 4 and B however,

argdt A o B omeans weld o Bl ceompleting the proof,

Theorem 8 A — B = AB. /l]]

K Van Steen 34



Probability and Statistics Chapter 1: Probability Theory

Theorem 9 De Morgan’s theorem Let A be an index set and {4,} a
collection of subsets of Q indexed by A. Then,

(1) UA;L: mza-

LEA LEA

i) (N4,= 4. /1
AEA LEA

Theorem 10 If 4 and B are subsets of Q, then (i) 4 = AB u AB, and
(ii) AB N AB = ¢.

PROOF (i) A=AnQ=An(BuB)=ABu AB. (ii) ABn AB
= A ABE = A =i, .
Theorem 11 If 4 < B, then AB= A, and 4 u B = B.

PROOF Left as an exercise.
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Rules of probability revisited

using set representations

The rules of probability generalize the rules of logic 1n a consistent way. You can check the rules are
consistent with normal logic when P(A)=1 or 0 (true or false).

1. Complement Rule

Denote “all events that are not A” as A°. Since either A or not A must happen, P(A) + P(A) = 1. Hence

P(Event happens) = 1 - P(Event doesn't happen)
or

P(A) = 1—-P(A°)

P(A°) = 1-P(4)

E.g. when throwing a fair die, P(not 6) = 1 —1/6 = 5/6.
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2. Addition Rule

For any two events 4 and B:

P(A or B) =P(4UB)

=P(4) + P(B) - P(4 and B)
=P(4) + P(B) - P(4 n B)

3

_|_

I/’_ (
\( ) )

4 Q N
I:. J:I
Y/

Note: “4 or B” = A U B includes the possibility that both 4 and B occur.

E.g. Throwing a fair die, let events be

A = get an odd number
B=getaSoro6

P(AorB) =P(AUB)=P(odd) + P(50r6)— P(5) =

This is consistent, since P(AU B) = P({1,3,5,6}) = % =3

K Van Steen
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Alternative: Note that A N B¢ = (AU B)*

ofeo;

©

AC BC

So we could also calculate P(A U B) using

P(AUB) = 1—P(4° nB°)

O

A" N B

.

L]

.

E.g. As before, throwing a fair die let results of interest be A = get an odd number, B = get a 5 or 6

Then A°={24,6}, B = {1,2,3,4} so A“ N B¢ ={2,4}. Hence

P(AorB)=1—P(A°NB) = 1-P({24)) = 1 —% =

. . . . :
This alternative form has the advantage of generalizing easily to lots of possible events:

P(A,ord,or..ord,)=1—-P(A5Nn A5 N ..NAS)

Wi oo
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Special Addition Rule
If P(A N B) = 0. the events are mutually exclusive, so
P(AorB)= P(AnB)= P(A)+P(B)

We will often consider mutually exclusive sets of outcomes, in which case the addition rule i1s very
simple to apply:

In general 1f several events 4, 4, ..., 4; arc mutually cxclusive (1.c. at most onc of them can happen
in a single experiment) then

P(A;orA,or..or4,)=P(A; UA,U..UA,) = P(A,) +P(A;)+ -+ P(4,) = Z P(A;)
k

E.g. Throwing a fair die. P(getting 4,5 or 6) = P(4)+P(5)+F(6) = 1/6+1/6+1/6=1/2.
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3.2 Sample space and event

 When talking about probability models, we have in mind a conceptual
experiment, whose possible outcomes we would like to study by assessing
the probability of certain outcomes or collection of outcomes.

e Two important concepts to assess these probabilities:

0 Sample space: The sample space denoted by Q is the collection or totality
of all possible outcomes of a conceptual experiment

0 Event and event space: An event is a subset of the sample space. The
class of all events associated with a given experiment is defined to be the
event space (usually denoted by a script Latin letter, such as %)
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* Note:

0 An event is always a subset of the sample space, but for sufficiently
large sample spaces not all subsets will be events

O The class of all subsets of the sample space will not necessarily
correspond to the event space

O If the sample space consists of only a finite number of points, then
the corresponding event space will be the class of all subsets of the
sample space
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EXAMPLE The eapeniment is the tnssing of a single diz (4 repular sax-sided

pelyvhedron or cube marked on each fuce with ane to six spots) and noting
which face 1 up.  Mow the die can Jand with any one of the six faces up:
20 there arc fix possible pulcomes of the experinent :

R o O O O 5 530

Let 4 = feven nomber of spots upl, A isan eveint! it s o subset of 1L
A = [Iil el fif]) Let- A, = {i spots s =172 0060 Fach A; = an
elementary event.  For this eaperiment the sample space 15 finite; henee
the even! space 1 all subsets of £ There are 2° = 6devents; of which only
b ure elementary, 1 & (incloding both o and 0.

K Van Steen
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EXAMPLEF Select & light bulh, and record the tume in hours thet 1t burns
before burning out.  Any nonnegative number 15 4 conceivahle nutcome
of this experiment; so D =I{x¥' x>0}, For this sample space not all

stuhsets of £ ure evenls:; however, any subset that can be exhibited will be
amevenl, For example, le

A = halh burns for at least & hours but burns ot beforem

Rnowrs)

= {xi &k < X <l

then A s event Torany b < & = m, i

K Van Steen
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e Clearly, our definitions of event and event space are not entirely
satisfactory.

 We said that if the event space is sufficiently large (whatever this means),
not all subsets of the sample space are events. But which subsets would be
seen as event and which not remains to be resolved

e Rather than developing the necessary mathematics to precisely define
which subsets of Q constitute our event space, we will state some
properties of it that seem reasonable to require:

(1) Qe o,
(1) If A e of, then 4 e .
() If Ay and 4, € o, then 4, U 4, € .
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e Any collection of events with properties (i) to (iii) is called a Boolean
algebra, or just algebra, of events. Note: collection of all subsets of O
necessarily satisfies the above properties.

e Several results follow (see next slides)

* Assuming that we impose the event space to be an algebra, and redefining
probability in the next section, will allow us to explain why an event space
cannot always be taken to be the collection of all subsets of Q.
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Theorem ¢ e oA
PROOF By property (i) Q € o; by (ii) Qe o/; but Q = ¢:s0 ¢ € .
/1]
Theorem If A, and 4, € o, then 4, N A, € .

PROOF A and A, € o/; hence 4, U 4,, and (4, U A,) e &, but
(A; U 4;) = A, n A, = A, N A, by De Morgan’s law. I

Theorem If Ay, A,, ..., A, € &, then | 4, and (E]A[Em’.
i=1 i=1

PROOF Follows by induction. /1]
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3.3. Redefining probability: an axiomatic definition
The general concept of a function

The definition of a function The following terminology 1s frequently used
to describe a function: A function, say f(-), 1s a rule (law, formula, recipe) that
associates each point in one set of points with one and only one point in another
set of points. The first collection of points, say A, is called the domain, and the
second collection, say B, the counterdomain,

Definition Function A function, say f(+), with domain 4 and coun-
terdomain B, is a collection of ordered pairs, say (a, b), satisfying (1) ae 4
and b € B: (i1) each a € A occurs as the first element of some ordered pair
in the collection (each b € B is not necessarily the second element of some
ordered pair); and (iii) no two (distinct) ordered pairs in the collection
have the same first element. i
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If (a, b) € f(*), we write b = f(a) (read *“ b equals f of @) and call f(a)
the value of f(-) at a. For any ae€ A4, f(a) is an element of B; whereas f(*) is
a set of ordered pairs. The set of all values of f(-) is called the range of f();
i.e., the range of f(-) ={be B: b= f(a) for some a € A} and is always a subset
of the counterdomain B but is not necessarily equal to it. f(a) 1s also called the
image of a under f(-), and a is called the preimage of f(a).

EXAMPLE Let f;(-) and f,(-) be the two functions, having the real line
for their domain and counterdomain, defined by

fi()={x»:y=x>+x+1, —0 <x < 0}

and

() ={(x,y):y=x* —t0 <x <o}

The range of f;(-) is the counterdomain, the whole real line, but the range

of f5(-) is all nonnegative real numbers, not the same as the counter-
domain. I

K Van Steen 48



Probability and Statistics Chapter 1: Probability Theory

Indicator functions

Definition Indicator function Let Q be any space with points w
and 4 any subset of Q. The indicator function of A, denoted by ) Sy
1s the function with domain Q and counterdomain equal to the set consist-
ing of the two real numbers 0 and 1 defined by

I if weAd
I =
al) 0 if wéeA.

1) clearly *““indicates " the set A, 11
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Properties of Indicator Functions Let Q be any space and .o any collection
of subsets of Q:

(1) I w)=1— Iz(w) for every A € «.
() Lyuyaf@)=1(0) I (0) 1, (w)for A,,..., A, € o.

(1) g 050 - ua (@) = max [ 4,(w), I (@), ..., ], (w)] for A, ...,
A, e .

(iv) Ii(w) = I (w) for every A € o.

e.g.,
1 if 0<x<1
| x)=1I X) = "
10, 19/(¥) = Tro, 1)(x) [0 otherwise,
and if I denotes the set of positive integers,
| if x is some positive integer

Iti(x) = {

0 otherwise.
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Probability functions

Definition Probability function A probability function P[-]is a set
function with domain &/ (an algebra of events)* and counterdomain the
interval [0, 1] which satisfies the following axioms:

(1) P[A] =0 for every 4 € .
(i) P[Q] = 1.

() If 4;, A4,, ... is a sequence of mutually exclusive events in <
(thatis, A, " A;=¢¢fori#j;i,j=1,2,. Jandif 4, U A, U --

UA e &/, then P

[=

8

f'h_1
CB

|_|

Il

13
-
N

/]
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*In defining a probability function, many authors assume that the domain of the set
function is a sigma-algebra rather than just an algebra. For an algebra «, we had the

property
if A, and A, € o/, then Ay A e .

A sigma-algebra differs from an algebra in that the above property is replaced by

if Ay, Az,..., 4,,...€0, then U A4 € .
n=1
It can be shown that a sigma-algebra is an algebra, but not necessarily conversaly,
If the domain of the probability function is taken to be a sigma-algebra then axiom
(ii1) can be simplified to

o

il Ay, A;,...is a sequence of mutually exclusive events in K P[ \J A,] = X P[A,])-
Il =1

A fundamental theorem of probability theory, called the exrension theorem, states that
if a probability function is defined on an algebra (as we have done) then it can be
extended to a sigma-algebra.
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* Note:

O The axioms for a probability function are clearly motivated by the
definitions of classical and frequency probability.

O The axiomatic definition is a mathematical one, telling us which set of
functions can be called probability functions

O However, the axiomatic definition does not tell us what value the
probability function PJ.] assigns to a given event.

0 We will have to model our random experiment in some way in order to
obtain values for the probability of events
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Probability space

Definition Probability space A probability space is the triplet
(Q, o/, P[*]), where Q is a sample space, &/ is a collection (assumed to be
an algebra) of events (each a subset of Q), and P[*] is a probability func-
tion with domain s¢. /]
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Properties of P[+] For each of the following theorems, assume that € and
& (an algebra of events) are given and P[-] is a probability function having
domain /.

Theorem 15 P[¢] = 0.

PROOF Take A, = ¢, A, = ¢, A3 = ¢, ...; then by axiom (iii)

P[$] = P[g A;] = 3. PL4] = 3. P41

which can hold only if P[¢] = 0. i

Theorem 16 If 4,, ..., A, are mutually exclusive events in &/, then

PlA, U=+ U 4,]=Y P[4]]
i=1
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Theorem 17 If A4 is an event in &7, then
P[A] =1 — P[A].
PROOF AuAdA=Q,and A n A= ¢;so
P[Q] = P[4 u A] = P[A] + P[A].
But P[Q2] = 1 by axiom (ii); the result follows. /1]

Theorem 18 If 4and Be &/, then P[4] = P[AB] + P[AB],and P[4 — B]
= P[4AB] = P[4] — P[AB].

PROOF A= ABuU AB, and ABn AB= ¢; so P[4]= P[AB]+
P[AB]. 11/
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Theorem 19 For every two events 4 and Be s/, P[4 U B] = P[A]
+ P[B] — P[AB]. More generally, for events 4,, A,, ..., A, € o

P[A, U Ay U v A] = ilP[AJ-] ~ Y'Y PlA;4]]

i<j

+ Y Y PlAA; 4] =+ + (= )" P[44, ... A,].

i<j<k
PROOF AUB=A U AB,and A n AB = ¢; so
P[A v B] = P[A] + P[AB]
= P[A] + P[B] — P[AB].
The more general statement is proved by mathematical induction.

11/
Theorem 20 If 4 and B e & and 4 < B, then P[4] < P[B].
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Theorem 21 Boole’s inequality If 4,, 4,, ..., A, € &, then
Pl[A, A, v =" U A, ]<P[A,]+ P[4,]+ -+ P[A,].

PROOF P[A; U 4,] = P[A;] + P[A,] — P[A;4,] < P[A,] + P[A,].
The proofis completed using mathematical induction. I

K Van Steen 58



Probability and Statistics Chapter 1: Probability Theory

3.4 Modeling experiments using finite sample spaces
Finite samples spaces with equally likely points

* For certain random experiments, there is a finite number of outcomes N,
and it is often realistic to assume that the probability of each outcome is
1/N

* The classical definition of probability is generally adequate for these
problems

* We show how the axiomatic definition is applicable as well
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Let wy, @y, ..., wy be the N
sample points in a finite space . Suppose that the set function P[-] with
domain the collection of all subsets of Q satisfies the following conditions:

(1) Plw}]=Plw,}]="""= Pl{wxy}].
(1)) If 4 is any subset of Q which contains N(A4) sample points [has size
N(A)1, then P[A] = N(A)/N.

Then it is readily checked that the set function P[-] satisfies the three axioms
and hence i1s a probability function.

Definition Equally likely probability function The probability furic-
tion P[- ] satisfying conditions (i) and (ii) above is defined to be an equally
likely probability function. /1]
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Given that a random experiment can be realistically modeled by assuming
equally likely sample points, the only problem left in determining the valuc of
the probability of event 4 is to find N(Q) = N and N(A). Strictly speaking this

15 just a problem of counting—count the number of points in 4 and the number
of points in Q.

If N(A) and N(£2) are large for a given random experiment with a finite
number of equally likely ouicomes, the counting itself can become a difficult

problem. Such counting can often be facilitated by use of certain combinatorial
formulas,

(see supplementary section to chapter)
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Finite samples spaces withOUT equally likely points

For finite sample spaces without equally likely sample points, things are not
quite as simple, but we can completely define the values of P[A4] for each of the
2 events A by specifying the value of P[-] for each of the N = N(Q) elemen-
tary events. Let Q = {w,, ..., wy}, and assume p; =P[{w;}]for j=1,..., N.
Since

1 = P[ﬂ] = P Lz_J]{ﬂJJ}] o= z P[{m;}]!

;=1

For any event A4, define P[4] = Zp;, where the summation is over those w;
belonging to A. It can be shown that P[] so defined satisfies the three axioms

and hence is a probability function.
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EXAMPLE Consider an experiment that has N outcomes, say w,, @, , ...,
wy, Where it is known that outcome @;4q 18 twice as likely as outcome

w;j,wherej=1,..., N—1;thatis, p;,, = 2p;,where p; = P[{w;}]. Find
P[A,], where A, ={w,, ®,, ..., ). Since

N N
L2i= F 2T pi=p(1 42421 40 2N g2 — 1y,

i=1
wrsd
P aW
and
py=27Y2" - 1);
hence
k k e
P[A4,] = ZP;= ZZJ_IJ'(ZN—”= N . /1]
=1 i=h 21
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3.5 Independence and conditional probability

Independence of events If P[A|B] does not depend on event B, that is,
P[A|B] = P[A], then it would seem natural to say that event 4 is independent
of event B. This is given in the following definition.

Definition Independent events For a given probability space
(2, o, P[-]), let A and B be two events in o/. Events 4 and B are

defined to be independent if and only if any one of the following conditions
is satisfied:

(i) P[AB] = P[A]P[B].
(i) P[A|B]= P[A]if P[B] > 0.
(iii) P[B|A]= P[B]if P[4] > 0. /1]

Remark Some authors use “statistically independent,” or * stochasti-
cally independent,” instead of * independent.” 11/
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Something to think about ...

The property of independence of two events 4 and B and the property that
A and B are mutually exclusive are distinct, though related, properties. For
example, two mutually exclusive events A4 and B are independent if and only if
P[A]P[B] = 0, which is true if and only if either A or B has zero probability.
Or if P[4] # 0 and P[B] # 0, then 4 and B independent implies that they are
not mutually exclusive, and 4 and B mutually exclusive implies that they are not
independent. Independence of 4 and B implies independence of other events
as well.
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Definition . Independence of several events For a given probability
space (Q, &, P|-]), let A, A5, ..., A, be n events in &/. Events 4,,
A,, ..., A, are defined to be independent if and only if

P[A,A;] = P[A;]P[4;] for i # j
PA;A; A = PIAPIA;IP[4,]  fori#jj#ki#k

P[ﬂA] - [1 Pl i
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Conditional probability: P{A B) means the probability of A given that B has happened or 1s true.
e.g. P(result of coin toss is heads | the coin is fair) =1/2

P{Tomorrow is Tuesday | it is Mondav) = 1

Piecard is a heart | it is a red swit) = 1/2

Probabilities are always conditional on something, for example prior knowledge, but often this 1s left
umplicit when it 1s irrelevant or assumed to be obvious from the context.

In terms of P(B) and P(A and B) we have ) T
P(ANB) / Y
F{H |E]| = W | )

A ANE |
P(B) gives the probability of an event in
the B set. Given that the event 15 in B,
P(A|B) 1s the probability of also being m N
A It is the fraction of the B outcomes that
are also i A:

K Van Steen 67



Probability and Statistics Chapter 1: Probability Theory

Multiplication Rule

We can re-arrange the definition of the conditional probability

P(A|B) :Hﬁ(—g)m P(B4) :H;l(—g)m

to obtain equivalent expressions for P(Aand B):

_ (P(AIB)P(B)
PANBE)= {p(giap(s
You can often think of P(A and B) as being the probability of first getting A with probability P(A),
and then getting B with probability P(B|A). This is the same as first getting B with probability P(B)
and then getting A with probability P(A|B).

E.g. Drawing two random cards from a pack without replacement, the probability of getting two hearts
is

P(first is a heart and second is a heart)
= P(firstis a heart) X P(second is a heart | first is a heart)

13 12 1 12 3
=—X—=—X—=—

52751 4751 1
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Special Multiplication Rule

If two events 4 and B are independent then P(A| B) = P(A) and P(B| A) = P(B): knowing that 4 has
occurred does not affect the probability that B has occurred and vice versa. In that case

P(4 and B) = P(4 ~ B) = P(4) P(B)

Probabilities for any number of independent events can be multiplied to get the joint probability. For
example if you toss a fair coin twice, the outcome of the first throw shouldn’t affect the outcome of the

second throw, so the throws are independent.

E.g. A fair coin is tossed twice, the chance of getting a head and then a tail is

P(H, and T,) = P(H,)P(T,) =2 x ¥ = %.

E.g. A die is thrown 3 times. The probability of getting the first six on the last throw is
P(not 6)P(not 6)P(6) = 5/6 X 5/6x 1/6 = 25/216 = 0.116..
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Properties of P[.|B] Assume that the probability space (Q, .o, P[-]) is given,
and let B e &/ satisfy P[B] > 0.

Theorem 22 P[¢|B] = 0. /1
Theorem 23 If 4,, ..., A, are mutually exclusive events in 7, then
PlA; v -+ v 4,|B]= ) P[A;|B]. /1]
i=1

Theorem 24 If A4 is an event in &7, then
P[A|B] =1 — P[A|B]. /1]
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Theorem 25 If 4, and A4, € &, then
P[A,|B] = P[4,4,|B] + P[A4,4,|B].

Theorem 26 For every two events 4, and 4, € &/,

P[A, UA:IB]=P[A1|B]+P[A2IB]“P[A1A2|BI-

Theorem 27 If A, and 4, € & and A, < A,, then

P[A,|B] < P[A,|B].

Theorem 28 If 4,, 4,,..., 4,€ &, then

P[Al UAEU "'UA,,lB]E ZP[AJB].
F=i

[l

i

/111

1
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Conditional probabilities can get complex, and it is often a good strategy
to build a probability tree that represents all possible outcomes
graphically and assigns conditional probabilities to subsets of events.

. Age Chat? Probability
Tree diagram for chat room '

i 4 2.1253*
habits for three adult age
groups = Da537
Internet : 0.0%87*
user
£ 0.3713
: € 0.0168%
P(chatting) =0.136 + 0.099 + 0.017

=0.252 = 02232

About 25% of all adult Internet users visit chat rooms.
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Breast cancer screening

If a woman in her 20s gets screened for breast cancer and receives a positive

test result, what is the probability that she does have breast cancer?

Disease
incidence

0.0004 Cancer -

Mammography

=

0.9996

SN

Mo cancer

Incidence of breast
cancer among
women ages 20-30

She could either have a positive test and have breast cancer or have a positive
test but not have cancer (false positive).
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Disease
incidence

0.000:«

[ Mammography
0.9996

Incidence of breast
cancer among
women ages 20-30

Possible outcomes given the positive diagnosis: positive test and breast cancer

or positive test but no cancer (false positive).

P(cancer and pos)

P(cancer| pos) =
P(cancer and pos)+ P(nocancer and pos)

%
_ 0.0004*0.8 L 03%
0.0004*0.84+0.9996%0.1

This value is called the positive predictive value, or PV+. It is an important piece

of information but, unfortunately, is rarely communicated to patients.
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4. Extremely useful results

Total Probability

If 4, A5, ..., A; form a partition (a mutually exclusive list of all possible outcomes) and B is any event
then

P(B) = P(BIA)P(4,) + P(BI4)P(A;) + -+ P(BIA)P(A) = ) P(BIA)P(4y)
k
Proof: This follows since

P(B)=P(B| 41)P(4}) + P(B| 4)P(4;) + ...+ P(B| AP(4p)
=P(B A))+P(BAy)+..+P(B4p)
=P(Bn AjorBn A4, or. +or B Ap)
=P(B (4 or 4, or 4))
=P(B)
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Corollary For a given probability space (Q, o, P[*]) let Be -4
satisfy 0 < P[B] < 1; then for every A € &/

P[A] = P[A|B)P[B] + P[A] B]P[B]. /1]

Remark The theorem of total probabilities remains true when n is infinitely

large
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Bayes’ Theorem

T'he multiplication rule gives P(A N B) = P(4|B)P(B) = P(B|A)P(A).
Bayes’ theorem follows by diving through by P(B) (assuming P(B) > 0):

P(B|A)P(A)
P(B)

P(A|B) =

This 1s an incredibly simple, nseful and important result. Tf yon have a model that tells you how likely
Xisgiven Y, Bayes’ theorem allows vou to calculate the probability of Y if vou observe X This is the
key to learning about your model from statistical data.

Note: often the Total Probability rule is often used to evaluate P(B):

P(B|A)P(4)
Zk P(B |AII:)P(AFI:)

P(A|B) =
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Corollary For a given probability space (Q, o/, P[-]) let 4 and Be &/
satisfy P[4] > 0 and 0 < P[B] < 1; then

P[A| B]P[B]

ESal= P[A|B]P{B] + P[4|BIP[B] /1]

Remark Bayes’ theorem remains true when n is infinitely large
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Example: evidence in court

The cars 1n a city are 90% black and 10% grey. A witness to a bank robbery briefly sees the escape car,
and says 1t 1s grey. Testing the witness under sumilar conditions shows the witness correctly identifies
the colour 80% of the time (in either direction) What is the probability that the car was actually grey?

Selution: Let G — car 1s grey. B—car 1s black, W — Witness says car Is grey.
Baves’ theorem gives:
P(W|G)P(G)

P(G|W) = PP

Use (otal probability Tule to wiile

P(W) = P(W|G)P(G) + P(W|B)P(B) = 0.8 x 0.1+ 0.2 x 0.9 = 0.26

Hence :

0.8x0.1

LCven though the witness 1s quite reliable, the lngh prior probability that the car 1s black makes this
significantly more likely despite what the witness reported.
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Example: coin tosses

A fair coin is tossed 7 times, and comes up heads all 7 times. What is the probability that the 8™ toss is
tails?

You meet a man in a bar who offers to bet on the outcome of a coin toss being heads. Being suspicious
you think there’s a 50% chance the coin 1s totally biased (has two heads!), but 50% that it 1s an honest

bet. The man tosses the coin 7 times and it comes up heads all 7 times. What 1s the probability that the
8™ toss is a tail?

Solution: A fair com is by definition unbiased, and each toss 1s independent and with P(heads)=1/2. So
the 8™ toss of a fair coin is still P(tails)= 1/2.

Let B = coin 1s biased, F= coin i1s fair (F = B¢) and 7H be seeing seven heads in first seven tosses.
1

7 )
Know P(7H|B) = 1, P(7TH|F) = (—) = —, P(F) = P(B) = 5 hence

2 128

1
P(7H) = P(7H|B)P(B) + P(7H|F)P(F) = 1x 0.5 +15g X 05 = 0.504.

So
P(7H|B)P(B) _1x0.5
P(7H) =~ 0.504

P(B|7H) = = 0.992

So very likely biased. Let Tgbe getting a tail on the 8™ toss. Using the total probability rule:

1 1
P(Tg|7H) = P(Tg|B,7H)P(B|7H) + P(Tg4|F,7H)P(F|7H) = 0 XE +§ X (1 —0.992) = 0.004.
Note at P(A/B.C) means probability of A given both B and C.
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Example: three-card swindle

Suppose there are three cards:
» A red card that 1s red on both sides,
e A white card that 1s white on both sides, and
o A mixed card that 1s red on one side and white on the other.

All the cards are placed into a hat and one 1s pulled at random and placed on a table. The side facing up
is red. What is the probability that the other side 1s also red?

Solution: Let R=red card, W = white card, M = mixed card. For a random draw
P(R)=P(W)=P(M)=1/3. Let SR = see a red face. P(SR) 1s the probability of getting the red card plus 1/2
the probability of the mixed card.

P(SR) = P(SR|R)P(R) + P(SRIM)P(M) = 1 x%+%x%=%

The probability we want 1s P(R|SR) since having the red card is the only way for the other side also to
be red. This is

P(SRIR)P(R) 1 X% 2
P(SR) ~ % 3

P(RISR) =

| Intuition: 2/3 of the three red faces are on the red card.



Probability and Statistics Chapter 1: Probability Theory

Bayes’ rule for multiple events

* If a sample space is decomposed in k disjoint events, A;, A,, ..., A,
— none with a null probability but P(A,) + P(A,) + ... + P(A,) = 1,

* And if C is any other event such that P(C) is not O or 1, then:

P(C| AyRA)

AN O = BeTA0RA) + RC| &) Py + -+ RAACI Ap

However, it is often intuitively much easier to work out answers with a
probability tree than with these lengthy formulas.
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Example: Breast cancer screening

If a woman in her 20s gets screened for breast cancer and receives a positive test

result, what is the
probakility that
she does have

breast cancer?

Disease
Incidence

-
0.0004% -

Mammaography |
0.9996

Incidence of breast
cancer among
women ages 20-30

PC| A)RAY

This time, we use Bayes's rule: A%\ O = parmay + ACT APtdn) + -+ RADAC] A

A1 is cancer, A2 is no cancer, Cis a positive test result.

P(cancer pos)=

P pos | cancer)P{cancer)

P(pos cancer)P(cancer)+ P(pos | nocancer)P(nocancer)

0.8%0.0004 B
0.8%0.0004 +0.1%0.9996

0.3%

K Van Steen

83



Probability and Statistics Chapter 1: Probability Theory

5. Reliability of a system

General approach: bottom-up analysis. Need to break down the system mto subsystems just
contaming elements in series or just containing elements in parallel. Find the reliability of each of these
subsystems and then repeat the process at the next level up.

Series subsystem: in the diagram p; = probability that element 7 fails, so 1 - p; = probability that it does
not fail.

The system only works if all » elements work. Failures of different elements are assumed to be
independent (so the probability of Element 1 failing does alter after connection to the system).

1.e. P(System does noft fail) =

P(Element 1 doesn't fail and Element 2 doesn't fail and ... and Element » doesn't fail)

= P(Element 1 doesn't fail)P(Element 2 doesn't fail) ... P(Element » doesn't fail)
[ Special multiplication rule; independence of failures]

=(1p)(1-py) ... Ap,) = | [(1-p))

j=1
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Parallel subsystem: the subsystem only fails i1f all the
elements fail.

1.e. P(System fails) = P(Element 1 fails and Element 2
fails and ... and Element » fails)

= P(Element 1 fails)P(Element 2 fails) ... = P(Element
n fails)
[Independence of failures]

=p1Ds Dy = pr

j=1
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Example: reliability of a sysiem

The reliability of a critical system has to be determined. An assessment has already been made of the

reliability of components making up the system. The probabilities of failure of the various components
in the next vear are indicated in the diagram below. It can be assumed that components fail
independently of one another.

0.05 0.03 0.1

— 0.02

0.05 0.03 0.1

(a) What 1s the probability that the system does not fail in the next year?

(b) Find the probability that within one vear the system does not fail but component * does fail.
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(a) What 1s the probability that the system does not fail in the next vear?

Solution

— 0.05 0.03 | —

Subsystem 1 -

P(Subsystem 1 doesn't fail) =(1-0.05)(1-0.03)=0.9215
=0.

P(Subsystem 1 fails) 07835

1 2. 7 o vrrhoreton |
Subsystem 2: (two units of subsysten 1) 00785
P(Subsystem 2 fails) = 0.0785 x 0.0785 = 0.006162 — —

0.078 5|—
Subsystem 3 - 0 1
P(Subsystem 3 fails) =0.1 x 0.1 =0.01 '
0.1

System (summarised):
P(System doesn't fail) = -1 0.0 0.00616 F 0.01 I~

(1-0.02)(1-0.006162)(1 -0.01)=0.964
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(b) Find P(System does not fail and component * does fail)

Solution

Let B =event that the system does not fail
Let ¢ =event that component * does fail
We need to find P(B and C).

Now, P(C) =0.1.

Also, P(B | C) = P(system does not fail given component * has failed);
now 1f component * has failed, Subsystem 3 has probability of failing of 0.1 instead of 0.01, so that the

final reliability diagram becomes:

. . — _ -') .
S PBIO)=(1-0.02)x — o002

0.006162

0.1 —

(1-6.162x10-3)(L - 0.1) = 0.8766

s P(Band C)=P(B | C)P(C)=0.8766 x 0.1 =0.08766
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Supplementary section
Combinatorics

Permutations - ways of ordering k items: k!

Factorials: for a positive integer k, k! = k(k-1)(k-2) ... 2.1
e.g. 3l=3x2x1=06.
By definition, 0! = 1.

The first item can be chosen in k ways. the second 1n k-1 ways, the third, in k-2 ways, etc., giving k!
possible orders.

e.g2. ABC can be arranged as ABC, ACB, BAC, BCA4, CAB and CBA, a total of 3! = 6 ways.
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Ways of choosing & things trom n, irrespective of ordering:
Binomial coefficient. for integers » and & where = &k = 0:

n _ T _ n!
Ge = (h) T kKl(n—k)!

Sometimes this 1s also called “7 choose /. Other notations include ,, C; and variants.

Justificationi: Choosing & things from = there arc » ways to choosc the first item, -7 ways to choosc the
second. . .. and (n-A+1) ways (o chioose Lhe lasl. so

) . n
ﬂ.'.k?l - 1)[“ T 2) e (?l o k + l”ll - ('”_ —_ ,I{)!

ways. This is the number of different orderings of & things drawn from »n. But there k! orderings of
things, so only 1/k! of these 1s a distinet set, giving the )} distinct sets.

E o Thereare 3!/2! X 1!) = 3 wavs to choose 2 letters from 3 leiters ABC: AB, BC and AC.
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E.g. in the National Lottery, the numbers of ways of choosing 6 numbers from 49 (1, 2, ..., 49) is:

£ — 49| _49><4E{><4?>(46}(45:%44_13983816
& T el431 6EX5x4%x3x2x1 T

So the probabilitv of winning with a given random ticket is about 1/(14 million).
E.g. Tossing a fair coin 10 times, the probability of getting exactlyv 5 heads (in any order) is

11 1 10X9x8x7X6 63

__Cljz = =0246
)55 % 1024 5X4X3X2X1 256
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Calculating factorials and (7

Many calculators have a factorial button, but they become very large very quickly:
15! = 1,307,674,368,000 = 1.3 x 10*2, so be careful they do not overflow.

Some calculators have a button for calculating C' or you can calculate it directly using factorials or
more manually using

nl _nn-1Dn-2).n—k+1Dn—-k)(n—-k-1)..1
kK!l(n—k)! Kln=k)(n—-k—-1)..1
_nn-1..(n—-k+1)
 k(k=1D(k=-2)..1

Beware that 1t can also become very large for large » and 4, for example there are
100891344545564193334812497256 = 10*? ways to choose 50 items from 100.

For computer users: In MatLab the function is callad “nchoosek™, in other systems like Maple and
Mathematica it is called “binomuial”.
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